Lý Thuyết
Tóm tắt kiến thức:
1. Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.
2. Mệnh đề chứa biến là câu khẳng định mà sự đúng đắn, hay sai của nó còn tùy thuộc vào một hay nhiều yếu tố biến đổi.
Ví dụ: Câu "Số nguyên n chia hết cho 3" không phải là mệnh đề, vì không thể xác định được nó đúng hay sai.
Nếu ta gán cho n giá trị n= 4 thì ta có thể có một mệnh đề sai.
Nếu gán cho n giá trị n=9 thì ta có một mệnh đề đúng.
3. Phủ định của một mệnh đề A, là một mệnh đề, kí hiệu là
. Hai mệnh đề A và
có những khẳng định trái ngược nhau.
Nếu A đúng thì
sai.
Nếu A sai thì
đúng.
4. Theo mệnh đề kéo theo
Mệnh đề kéo theo có dạng: "Nếu A thì B", trong đó A và B là hai mệnh đề. Mệnh đề "Nếu A thì B" kí hiệu là A =>B. Tính đúng, sai của mệnh đề kéo theo như sau:
Mệnh đề A => B chỉ sai khi A đúng và B sai.
5. Mệnh đề đảo
6. Mệnh đề tưởng đương
Nếu A => B là một mệnh đề đúng và mệnh đề B => A cũng là một mệnh đề đúng thì ta nói A tương đương với B, kí hiệu: A ⇔ B.
Khi A ⇔ B, ta cũng nói A là điều kiện cần và đủ để có B hoặc A khi và chỉ khi B hay A nếu và chỉ nếu B.
7. Kí hiệu ∀, kí hiệu ∃
- Câu khẳng định: Với x bất kì tuộc X thì P(x) là mệnh đề đúng được kí hiệu là: ∀ x ∈ X : P(x).
- Câu khẳng định: Có ít nhất một x ∈ X (hay tồn tại x ∈ X) để P(x) là mệnh đề đúng kí hiệu là ∃ x ∈ X : P(x).
Bài Tập
Bài 1,2,3,4 trang 9 sgk đại số 10
a) 3 + 2 = 7;
b) 4 + x = 3;
c) x + y > 1;
d) 2 - √5 < 0.
a) Mệnh đề sai;
d) Mệnh đề đúng.
a) 1794 chia hết cho 3;
b) √2 là một số hữu tỉ:
c) π < 3,15;
d) |-125|≤0 .
b) Sai. "√2 không phải là một số hữu tỉ".
c) Đúng. "π không nhỏ hơn 3, 15". Dùng kí hiệu là: π ≥ 3,15 .
d) Sai. "|-125|>0".
Bài 3. Cho các mệnh đề kéo theo
Các số nguyên có tận cùng bằng 0 đều chia hết cho 5.
Tam giác cân có hai đường trung tuyến bằng nhau.
Hai tam giác bằng nhau có diện tích bằng nhau.
b) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niện "điều kiện đủ".
c) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niện "điều kiện cần".
Một số tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.
Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau.
Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau.
Chia hết cho 5 là điều kiện cần để một số có tận cùng bằng 0.
Có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.
Bài 4. Phát biểu mỗi mệnh đề sau, bằng cách sử dụng khái niệm "điều kiện cần và đủ"
b) Một hình bình hành có các đường chéo vuông góc là một hình thoi và ngược lại.
c) Phương trình bậc hai có hai nghiệm phân biệt khi và chỉ khi biệt thức của nó dương.
b) Điều kiện cần và đủ để tứ giác là hình thoi là tứ giác là hình bình hành có hai đường chéo vuông góc với nhau.
c) Điều kiện cần và đủ để phương trình bậc hai có hai nghiệm phân biệt là biệt thức của nó dương.
Bài 5,6,7 trang 10 sgk đại số 10
Bài 5. Dùng kí hiệu ∀, ∃ để viết các mệnh đề sau
a) Mọi số nhân với 1 đều bằng chính nó;
b) Có một số cộng với chính nó bằng 0;
c) Mọt số cộng vớ số đối của nó đều bằng 0.
a)∀x ∈ R: x.1=x;
b) ∃ x ∈ R: x+x=0;
c) ∀x∈ R: x+(-x)=0.
Bài 6. Phát biểu thành lời mỗi mệnh đề sau và xét tính đúng sai của nó
a) ∀x ∈ R: x2>0;
b) ∃ n ∈ N: n2=n;
c) ∀n ∈ N: n ≤ 2n;
d) ∃ x∈R: x<
.
a) ∀x ∈ R: x2>0= "Bình phương của một số thực là số dương". Sai vì 0∈R mà 02=0.
b) ∃ n ∈ N: n2=n = "Có số tự nhiên n bằng bình phương của nó". Đúng vì 1 ∈ N, 12=1.
c) ∀n ∈ N: n ≤ 2n = "Một số tự nhiên thì không lớn hơn hai lần số ấy". Đúng.
d) ∃ x∈R: x<
= "Có số thực x nhỏ hơn nghịch đảo của nó". Mệnh đề đúng. chẳng hạn 0,5 ∈ R và 0,5 <
.
a) ∀n ∈ N: n chia hết cho n;
b) ∃x ∈ Q: x2=2;
c) ∀x ∈ R: x< x+1;
d) ∃x ∈ R: 3x=x2+1;
a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.
b)
= "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.
c)
= ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.
d)
= ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"
Đây là mệnh đề sai vì với x=
ta có :
3
=
+1
Không có nhận xét nào:
Đăng nhận xét