css-top

top-script

header

Các tập hợp số

Lý Thuyết
Tóm tắt kiến thức
1. Tập hợp số tự nhiên, kí hiệu N
N={0, 1, 2, 3, ..}.
2. Tập hợp số nguyên, kí hiệu là Z
Z={..., -3, -2, -1, 0, 1, 2, 3, ...}.
Tập hợp số nguyên gồm các phân tử là số tự nhiên và các phân tử đối của các số tự nhiên.
Tập hợp các số nguyên dương kí hiệu là N*
3. Tập hợp số hữu tỉ, kí hiệu là Q
Q={ / a, b∈Z, b≠0}
Mỗi số hữu tỉ có thể biểu diễn bằng một số thập phân hữu hạn hoặc vô hạn tuần hoàn.
4. Tập hợp số thực, kí hiệu là R
Một số được biểu diễn bằng một số thập phân vô hạn không tuần hoàn được gọi là một số vô tỉ. Tập hợp các số vô tỉ kí hiệu là I. Tập hợp số thực gồm các số hữ tỉ và các số vô tỉ.
= Q  I.
5. Một số tập hợp con của tập hợp số thực.
+ Đoạn [a, b] ={x ∈ R / a ≤ x ≤ b} 
+ Khoảng (a; b) ={x ∈ R / a < x < b} 
- Nửa khoảng [a, b) = {x ∈ R / a ≤ x < b}
- Nửa khoảng (a, b] ={x ∈ R / a < x ≤ b} 
- Nửa khoảng [a; +∞) = {x ∈ R/ x ≥ a}
- Nửa khoảng (-∞; a] = {x ∈ R / x ≤a} 
- Khoảng (a; +∞) = {x ∈ R / x >a} 
- Khoảng (-∞; a) = {x ∈R/ x<a}
.
Bài Tập
Bài 1,2,3 trang 18 sgk đại số 10
Bài 1. Xác định các tập hợp sau và biểu diễn chúng trên trục số
a) [-3;1) ∪ (0;4];
b) (0; 2] ∪ [-1;1);
c) (-2; 15) ∪ (3; +∞);
d) (-1; ) ∪ [-1; 2) 
e) (-∞; 1) ∪ (-2; +∞).
Hướng dẫn giải:
a) [-3;1) ∪ (0;4] = [-3; 4]
b) (0; 2] ∪ [-1;1) = [-1; 2]
c) (-2; 15) ∪ (3; +∞) = (-2; +∞)
d) e) Bạn tự giải.
Bài 2. Xác định các tập hợp sau và biểu diễn chúng trên trục số
a) (-12; 3] ∩ [-1; 4];
b) (4, 7) ∩ (-7; -4);
c) (2; 3) ∩ [3; 5);
d) (-∞; 2] ∩ [-2; +∞).
Hướng dẫn giải:
a) (-12; 3] ∩ [-1; 4] = [-1; 3]
b) (4, 7) ∩ (-7; -4) = Ø
c) (2; 3) ∩ [3; 5) = Ø
d) (-∞; 2] ∩ [-2; +∞)= [-2; 2].
Học sinh tự vẽ.
Bài 3. Xác định các tập hợp sau và biểu diễn chúng trên trục số
a) (-2; 3) (1; 5);
b) (-2; 3) [1; 5);
c) R (2; +∞);
d) R (-∞; 3].
Hướng dẫn giải:
Học sinh tự vẽ.
a) (-2; 3) (1; 5) = (-2; 1];
b) (-2; 3) [1; 5) = (-2; 1);
c) R (2; +∞) = (- ∞; 2]
d) R (-∞; 3] = (3; +∞).
Chi tiết »

Các phép toán tập hợp

Lý Thuyết
Tóm tắt kiến thức
Giao của hai tập hợp A và B, kí hiệu A ∩ B là tập hợp gồm các phần tử thuộc B
A ∩ B = {x/ x ∈ A và x ∈ B}.
2. Phép hợp
Hợp của hai tập hợp A và B, kí hiệu A ∪ B là tập hợp gồm các phần tử thuộc A hoặc thuộc B
A ∪ B = {x/ x ∈ A hoặc x ∈ B}.
3. Phép hiệu
Hiệu của tập hợp A với tập hợp B, kí hiệu A B là tập hợp gồm các phần tử thuộc A và không thuộc B
A  B= {x/ x ∈ A và x  B}.
4. Phần bù
Nếu B ⊂ A thì AB được gọi là phần bù của B trong A, kí hiệu là CAB
Bài Tập
Bài 1,2,3,4 trang 15 sgk đại số 10

Bài 1. Kí hiệu A là tập hợp các chữ cái trong câu "CÓ CHÍ THÌ NÊN", B là tập hợp các chữ cái trong câu "CÓ CÔNG MÀI SẮT CÓ NGÀY NÊN KIM'.
Hãy xác định
A= {C, E, Ê, H, I, N, O, T}
B = {A, Ă, C, Ê, K, I, G, O, Ô, M, N, S, T, Y}
A ∩ B = {C, Ê, I, N, O, T}
A ∪ B = {A, Ă, C, E, Ê, G, H, I, K, M, N, O, Ô, S, T, Y}.
 = {E, H}.
Bài 2. Vẽ lại và gạch chéo các tập hợp A ∩ B, A ∪ B, A\B (h.9) trong các trường hợp sau.
a) Trường hợp thứ nhất, xem trong tóm tắt lí thuyết.
b) 
c) 
d) Bạn tự giải.
Bài 3. Trong 45 học sinh của lớp 10A có 15 bạn được xếp loại học lực giỏi, 20 bạn được xếp loại hạnh kiểm tốt, trong đó có 10 bạn vừa học lực giỏi, vừa có hạnh kiểm tốt. Hỏi
a) Lớp 10A có bao nhiêu bạn được khen thưởng, biết rằng muốn được khen thưởng bạn đó phải có học lực giỏi hoặc hạnh kiểm tốt ?
b) Lớp 10A có bao nhiêu bạn chưa được xếp loại học lực giỏi và chưa có hạnh kiểm tốt ?
a) Gọi A là tập hợp học sinh giỏi, B là tập hợp học sinh được hạnh kiểm tốt của lớp 10A, thì A ∩ B là tập hợp các học sinh vừa giỏi, vừa có hạnh kiểm tốt.
Tập hợp học sinh được khen thưởng là A ∪ B. Số phân tử của A ∪ B bằng só phân tử của A cộng với số phân tử của B bớt đi số phân tử của A ∩ B (vì được tính hai lần).
- Vậy số học sinh lớp 10A được khen thưởng là:
15 + 20 - 10 = 25 người.
b) Số bạn lớp 10A chưa học giỏi và chưa có hạnh kiểm tốt là số học sinh lớp 10A chưa được khên thưởng bằng:
45 - 25 = 20 người.
Bài 4. Cho tập hợp A, hãy xác định
A ∩ A, A ∪ A, A ∩ Ø, A ∪ Ø, CAA, CAØ.
A ∩ A = A;
A ∪ A = A;
A ∩ Ø = Ø;
A ∪ Ø = A;
CAA = Ø;
CAØ = A.
Chi tiết »

Tập hợp

Lý Thuyết
Tóm tắt kiến thức
1. Khái niệm tập hợp
Tập hợp là một khái niệm cơ bản (không định nghĩa) của toán học. Các tập hợp thường được kí hiệu bằng những chữ cái in hoa: A, B, ..., X, Y. Các phần tử của tập hợp được kí hiệu bằng các chữ in thường a, b, ..., x, y. Kí hiệu a ∈ A để chỉ a là một phần tử của tập hợp A hay a thuộc tập hợp A. Ngược lại a  A để chỉ a không thuộc A.
Một tập hợp có thể được cho bằng cách liệt kê các phần tử của nó hoặc được cho bằng cách nêu tính chất đặc trưng của các phân tử của nó.
Ví dụ: A = {1, 2} hay A = {x ∈ R/ x2- 3 x +2=0}. Một tập hợp không có phân tử nào được gọi là tập hợp rỗng, kí hiệu Ø .
2. Biểu đồ Ven
Để minh họa một tập hợp người ta dùng một đường cong khép kín giới hạn một phần mặt phẳng. Các điểm thuộc phần mặt phẳng này chỉ các phần tử của tập hợp ấy.
3. Tập hợp con
Ta gọi A là tập hợp con của B, kí hiệu A ⊂ B ⇔ x ∈ A => x ∈ B
4. Hai tập hợp bằng nhau
Hai tập hợp A và B bằng nhau, kí hiệu A = B, nếu tất cả các phần tử của chúng như nhau
A = B ⇔ A ⊂ B và B ⊂ A.
Bài Tập
Bài 1,2,3 trang 13 sgk đại số 10
Bài 1.
a) Cho A = {x ∈ N| x < 20 và x chia hết cho 3}
Hãy liệt kê các phân tử của tập hợp A.
b) Cho tập hợp B = {2, 6, 12, 20, 30}.
Hãy xác định B bằng cách chỉ ra một tính chất đặc trưng cho các phần tử của nó.
c) Hãy liệt kê các phần tử của tập hợp các học sinh lớp em cao dưới 1m60.
a) A = {0, 3, 6, 9, 12, 15, 18}.
b) B = {x ∈ N / x = n(n+1), n ∈ N, 1 ≤ n ≤ 5}.
c) Học sinh tự thực hiện.
Bài 2. Trong hai tập hợp A và B dưới đây, tập hợp nào là con của tập hợp còn lại ? Hai tập hợp A và B có bằng nhau không ?
a) A là tập hợp các hình vuông
B là tập hợp các hình thoi.
b) A = {n ∈ N / n là một ước chung của 24 và 30}
B = { n ∈ N/ n là một ước của 6}.
a) Mỗi hình vuông là một hình thoi (có một góc vuông). Vậy A ⊂ B, A ≠ B.
b) Mỗi số là ước của 6 là một ước chung của 24 và 30.
n ∈ B => n ∈ A. Vậy B ⊂ A. Mặt khác mỗi ước chung của 24 và 30 là một ước của 6. Vậy A ⊂ B. Suy ra A= B.
Bài 3. Tìm tất cả các tập con của tập hợp sau
a) A = {a, b};
b) B = {0, 1, 2}.
a) {a}, {b}, Ø, A.
b) {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, Ø, B.
Ghi chú: Tập hợp Ø là tập hợp con của tập hợp bất kì. Mỗi một tập hợptập hợp con của chính nó.
Chi tiết »

Mệnh đề

Lý Thuyết
Tóm tắt kiến thức:
1. Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.
2. Mệnh đề chứa biến là câu khẳng định mà sự đúng đắn, hay sai của nó còn tùy thuộc vào một hay nhiều yếu tố biến đổi.
Ví dụ: Câu "Số nguyên n chia hết cho 3" không phải là mệnh đề, vì không thể xác định được nó đúng hay sai.
Nếu ta gán cho n giá trị n= 4 thì ta có thể có một mệnh đề sai.
Nếu gán cho n giá trị n=9 thì ta có một mệnh đề đúng.
3. Phủ định của một mệnh đề A, là một mệnh đề, kí hiệu là . Hai mệnh đề A và  có những khẳng định trái ngược nhau.
Nếu A đúng thì  sai.
Nếu A sai thì  đúng.
4. Theo mệnh đề kéo theo
Mệnh đề kéo theo có dạng: "Nếu A thì B", trong đó A và B là hai mệnh đề. Mệnh đề "Nếu A thì B" kí hiệu là A =>B. Tính đúng, sai của mệnh đề kéo theo như sau:
Mệnh đề A => B chỉ sai khi A đúng và B sai.
5. Mệnh đề đảo
Mệnh đề "B=>A" là mệnh đề đảo của mệnh đề A => B.
6. Mệnh đề tưởng đương 
Nếu A => B là một mệnh đề đúng và mệnh đề B => A cũng là một mệnh đề đúng thì ta nói A tương đương với B, kí hiệu: A ⇔ B.
Khi A ⇔ B, ta cũng nói A là điều kiện cần và đủ để có B hoặc A khi và chỉ khi B hay A nếu và chỉ nếu B.
7. Kí hiệu  ∀, kí hiệu ∃
Cho mệnh đề chứa biến: P(x), trong đó x là biến nhận giá trị từ tập hợp X.
- Câu khẳng định: Với x bất kì tuộc X thì P(x) là mệnh đề đúng được kí hiệu là:  ∀ x ∈  X : P(x).
- Câu khẳng định: Có ít nhất một x ∈ X (hay tồn tại x ∈ X) để P(x) là mệnh đề đúng kí hiệu là ∃ x ∈  X : P(x).
Bài Tập
Bài 1,2,3,4 trang 9 sgk đại số 10
Bài 1. Trong các câu sau, câu nào là mệnh đề, câu nào là mệnh đề chứa biến?
a) 3 + 2 = 7;
b) 4 + x = 3;
c) x + y > 1;
d) 2 - √5 < 0.
a) Mệnh đề sai;
b) Mệnh đề chứa biến;
c) Mệnh đề chứa biến;
d) Mệnh đề đúng.
Bài 2. Xét tính đúng sai của mỗi mệnh đề sau và phát biểu mệnh đề phủ định của nó.
a) 1794 chia hết cho 3;
b) √2 là một số hữu tỉ:
c) π < 3,15;
d) |-125|≤0 .
a) Đúng. Mệnh đề phủ định: "1794 không chia hết cho 3".
b) Sai. "√2 không phải là một số hữu tỉ".
c) Đúng. "π không nhỏ hơn 3, 15". Dùng kí hiệu là: π ≥ 3,15  .
d) Sai. "|-125|>0".
Bài 3. Cho các mệnh đề kéo theo
Nếu a và b cùng chia hết cho c thì a+b chia hết cho c (a, b, c là những số nguyên).
Các số nguyên có tận cùng bằng 0 đều chia hết cho 5.
Tam giác cân có hai đường trung tuyến bằng nhau.
Hai tam giác bằng nhau có diện tích bằng nhau.
a) Hãy phát biểu mệnh đề đảo của mỗi mệnh đề trên.
b) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niện "điều kiện đủ".
c) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niện "điều kiện cần".
a) Nếu a+b chia hết cho c thì a và b chia hết cho c. Mệnh đề sai.
Số chia hết cho 5 thì tận cùng bằng 0. Mệnh đề sai.
Tam giác có hai trung tuyến bằng nhau thì tam giác là cân. Mệnh đề đúng.
Hai tam giác có diện tích bằng nhau thì bằng nhau. Mệnh đề sai.
b) a và b chia hết cho c là điều kiện đủ để a+b chia hết cho c.
Một số tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.
Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau.
Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau.
c) a+b chia hết cho c là điều kiện cần để a và b chia hết cho c.
Chia hết cho 5 là điều kiện cần để một số có tận cùng bằng 0.
Điều kiện cần để tam giáctam giác cân là nó có hai trung tuyến bằng nhau.
Có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.
Bài 4. Phát biểu mỗi mệnh đề sau, bằng cách sử dụng khái niệm "điều kiện cần và đủ"
a) Một số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 và ngược lại.
b) Một hình bình hành có các đường chéo vuông góc là một hình thoi và ngược lại.
c) Phương trình bậc hai có hai nghiệm phân biệt khi và chỉ khi biệt thức của nó dương.
a) Điều kiện cần và đủ để một số chia hết cho 9 là tổng các chữ số của nó chia hết cho 9.
b) Điều kiện cần và đủ để tứ giác là hình thoi là tứ giác là hình bình hành có hai đường chéo vuông góc với nhau.
c) Điều kiện cần và đủ để phương trình bậc hai có hai nghiệm phân biệt là biệt thức của nó dương.

Bài 5,6,7 trang 10 sgk đại số 10
Bài 5. Dùng kí hiệu ∀, ∃ để viết các mệnh đề sau
a) Mọi số nhân với 1 đều bằng chính nó;
b) Có một số cộng với chính nó bằng 0;
c) Mọt số cộng vớ số đối của nó đều bằng 0.
a)∀x ∈ R: x.1=x;
b) ∃ x ∈ R: x+x=0;
c) ∀x∈ R: x+(-x)=0.
Bài 6. Phát biểu thành lời mỗi mệnh đề sau và xét tính đúng sai của nó
a) ∀x ∈ R: x2>0;
b) ∃ n ∈ N: n2=n;
c) ∀n ∈ N: n ≤ 2n;
d) ∃ x∈R: x<.
a) ∀x ∈ R: x2>0= "Bình phương của một số thực là số dương". Sai vì 0∈R  mà 02=0.
b) ∃ n ∈ N: n2=n = "Có số tự nhiên n bằng bình phương của nó". Đúng vì 1 ∈ N, 12=1.
c)  ∀n ∈ N: n ≤ 2n = "Một số tự nhiên thì không lớn hơn hai lần số ấy". Đúng.
d) ∃ x∈R: x< = "Có số thực x nhỏ hơn nghịch đảo của nó". Mệnh đề đúng. chẳng hạn 0,5 ∈ và 0,5 <.
Bài 7. Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai cuả nó.
a) ∀n ∈ N: n chia hết cho n; 
b) ∃x ∈ Q: x2=2;
c) ∀x ∈ R: x< x+1;
d) ∃x ∈ R: 3x=x2+1;
a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.
b)  = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.
c)  = ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.
d)  = ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"  
Đây là mệnh đề sai vì với x= ta có : 
=+1
Chi tiết »

css

script